

Vaccination Techniques in alternative production systems

Vaccines

CHEAG

Others

Live vaccines

A <u>weakened living pathogen</u> that retains all of its antigenic properties, but can no longer cause a pathological condition

Advantages

- humoral + cell-mediated immunity
- Rapid onset of protection
- Easy mass application
- No adjuvants needed

Disadvantages

- Vaccine agent is present in poultry population
- Possibility of shedding of the vaccine agent
- Post vaccinal reactions are more likely

Inactivated vaccines

A <u>killed</u> pathogen so it cannot replicate at all but remains immunogenic. It requires an <u>adjuvant</u> to induce immune response

Advantages

- No introduction of a "new living agent"
- No vaccine reactions
- Accurate individual vaccination

Disadvantages

- Slow onset of protection
- Humoral immunity only
- High labour costs for application
- Bacterins may cause local reactions

Vectored vaccines

A weakened living virus (the vector) that is used to express, by insertion of the genes for protection against a second virus (the donor), antibodies also against this donor virus by multiplication

Advantages

- No shedding of the donor virus
- No vaccine reactions for the donor virus
- It is possible to admister at hatchery

Disadvantages

- No specific local immunity for the donor virus
- Accurate individual vaccination is essential
- Only one vaccine for vector virus can be applied

An universal vaccination program ?

Vaccination Program for Commercial Layers ^a				
Age	Vaccine	Route	Туре	
1 day	Marek's disease	SC	Turkey herpesvirus and SB-1	
14 –21 days	Newcastle/infectious bronchitis	Water	B1/Mass	
14–21 days	Infectious bursal disease	Water	Intermediate	
5 wk	Newcastle/infectious bronchitis	Water or coarse spray	B1/Mass	
8-10 wk	Newcastle/infectious bronchitis	Water or coarse spray	B1 or LaSota/Mass	
10-12 wk	Encephalomyelitis	Wing web	Live, chick-embryo origin	
10-12 wk	Fowlpox	Wing web	Modified live	
10-12 wk	Laryngotracheitis	Intraocular	Modified live	
10-14 wk	Mycoplasma gallisepticum ^b	Intraocular or spray	Mild live strain	
or 18 wk		Parenteral	Inactivated	
12-14 wk	Newcastle/infectious bronchitis	Water or aerosol	B1 or LaSota/Mass	
16-18 wk	Newcastle/infectious bronchitis	Water or aerosol	B1 or LaSota/Mass	
Every 60–90 days or 18 wk	Newcastle/infectious bronchitis	Parenteral	Inactivated	

Merck veterinary manual

Vaccination program should be tailor-made

Key points in vaccines administration

1. Respect the timing according the vaccine program

2. Keep records on each vaccine administration

3. Administer vaccines only to healthy flocks

S. No.	Age	Vaccine	Route of administration
1	First day	Marek's disease	Under skin
2	5th day	Raniket disease (F/B)	I/O or I/N
3	7≜ day	Marek's disease booster	Under skin
4	10 th day	Debeaking	-
5	12-14 th day	Marek's disease - Intermediate	Eye
6	20-22nd day	IBD Plus	I/O / water
7	27th day	LaSota	water
8	30 👷 day	Infectious Bronchitis(IB)	water
9	42nd day	Fowl Pox	wing
10	47 th day	Deworming	water
11	52nd day	LaSota	water
12	64 🖺 day	R ₂ B	I/M
14	86 <u>th</u> day	Coryza / Fowi Cholera	Under skin
15	93 rd day	IB	water
16	100 day	Debeaking (second time)	-
17	110 🌦 day	Deworming	water
18	112 🔮 day	LaSota	water
19	126 🌺 day	RD - Killed	Under skin
20	280 🌦 day	Deworming / LaSota	water

- Age of birds
- Date of vaccination
- Route of administration •
- Withdraw period
- Prescription order no

- Vaccine type
- Batch number
- Expiration date
- Person administering the vaccine

Key points in vaccines administration

Key points in vaccines administration

5. Transport & store vaccines correctly

Follow strictly the manufacturers recommendations

LIVE & LYOPHIZATED VACCINES

 Temperature strictly 2-8 °C
 Protect from direct sunlight
 Do not freeze

NEVER BREAK

THE COLD CHAIN

INACTIVATED & EMULSIONATED VACCINES

DOGS

MINUTES

just six minutes.com.au

Pledge to never leave

your dog unattended.

RSPCA^{\$}

Recommended temperature 2-8 °C

Protect from direct sunlight

Do not freeze

Inactivated vaccines storage

Administration routes

Mass administration Administration route is a essential part of the veterinarian prescription Drinking water Spray **Individual administration RESPECT IT STRICLY !!**

Eye Drop

Injection Wing inoculation

Live ILT Vaccine administration

Source: R. Fulton

DRINKING WATER VACCINATION

Local protection

Available

vaccines

against:

IB

ND

ILT

AE

SE

IBD

•

 \bullet

 \bullet

- Digestive tract
- (Respiratory tract)
- Mass application
- Appropriate method of administration for most live vaccines

DRINKING WATER VACCINATION

VACCINATION PROCEDURES

Water privation

Objective: make the whole flock to get thirsty

- All the birds feels attired
 by water and will use the drinker as soon as water will be available again
- Water consumption is augmented during vaccination

- <u>Too thirsty</u>: bird will contest for water and drink in excess.
- <u>Not enough thirsty:</u> bird will be not specially attired by water

Privation time Flock age Temperature

Drinking water vaccine preparation

Drinking water vaccination failures

TOO MUCH WATER

CONSEQUENCE	Vaccine is not taken within 2 hours
EXACERBATING FACTORS	Young chicks, short privation time
CORRETIVE MEASURES	Calculate accurately the water volume
WARNING LOG	Vaccine intake time

Drinking water vaccination failures

TOO FEW WATER

CONSEQUENCE	Poor coverage	
EXACERBATING FACTORS	Old chicks, Long privation period, High temperatures, High stock density	
CORRETIVE MEASURES	Calculate accurately the water volume, Shorten privation period, Temperature	
WARNING LOG	Dye control	

Drinking water vaccination failures

NOT ENOUGH PRESSURE IN THE PIPELINES

CONSEQUENCE	Vaccine is not taken within 2 hours Poor coverage	
EXACERBATING FACTORS	Old chicks, Long privation period, High temperatures, High stock density	2
CORRETIVE MEASURES	Use pression pump, shut down lights when distributing the vaccine	
WARNING LOG	Dye control, Vaccine intake time	INTER

Water training pipe lines

Do not use the training water pipe lines for vaccination. Keep them out of service

Water vaccination

SPRAY VACCINATION

Available vaccines against:

- IB
- ND
- ILT
- MG
- MS
- AMPV

- Local protection
 - Respiratory tract
- Mass application
- Used for vaccines that should replicate in the respiratory tract

Spray vaccine administration

INTERNATIONAL

Spray vaccination

VACCINATION PROCEDURES

INTERNATIONAL

Drinking water vaccine preparation

Droplet size

DROPLET SIZE IN SPRAY VACCINATION

Droplet size

Examples of spray distribution curves

Droplet size mainly depends on

- Pressure
- Nozzle

Pay attention not only in the droplet average size but:

- the droplet homogeneity
- Droplet size variation during the vaccination time

Poor Coverage (Vaccines losses)

Poor Coverage (Poor distribution)

- 6. Use enough amount of vaccine dissolution (min 450 1000 ml / 1000 birds)
- 7. Distribute correctly among all the birds
- 8. Hold the nozzle about 40 cm above the birds' head
- 9. Reduce the light intensity as much as possible

Keep the birds calm and vaccinate them all

REDUCING LIGHTING INTENSITY IS THE BEST WAY TO KEEP THE BIRDS CALM

BROWN LAYERS

 Lighting intensity as low as possible (>3 luxes)

WHITE LAYERS

 Vaccinate during dark period while birds are slepping

Bird confinement

If it is possible to confine birds to a cage, enclose birds for vaccination

No birds confinement

Keep low lighting intensity during all vaccination process
 Walk slowly and do not disturb the birds

- ✓ Spray all the areas where the birds are
- Two vaccinators should work at the same time

Individual vaccination

Catching the birds

1) Divide production unit in two areas: vaccinated and non vaccinated

2) Move all birds to non vaccinated area

3)Chatch one by one birds, apply vaccine and move to vaccinated

Confinement possible

1) Close birds into the cage and act as in cage system

Working conditions

KEEP THE BIRDS AS CALM AS POSSIBLE

Lighting intensity

- White / Non confined bird >3lux
- Brown confined birds
 5 lux

Do not disturb bird by your movement or noises

Catch the birds gently and do no provoke hysteria reactions

Working conditions

ALL BIRDS IN A UNIT SHOULD BE VACCINATED DURING THE DAY

Work team

Correct equipment

Eye drop vaccination

<u>Available</u>
vaccines
against:

- IB
- ND
- ILT
- MG
- MS

- Individual application
- Local protection
 - Respiratory tract
- Each bird receives a full dose of vaccine.
- Both local and humoral immunity due to the presence of the Harderian gland behind the third eyelid.

Eye drop vaccination

EYE DROP PROCEDURES

Eye drop vaccine preparation

INTERNATIONAL

Eye drop vaccination

EYE DROP APLICATION

Birds dosed effectively will show staining at the nares shortly after vaccination.

Ensure that the fluid does not 'roll off' the eye.

Each bird should be held until it blinks after the droplet is applied

Wing Web vaccine preparation

WING WEB

VACCINE REACTION

Appears 5-10 days after vaccination

Ensure a correct vaccination

Check at day 7 post vaccination

- >90%: OK
- 80-90%: Doubtful Vaccination success
- <80%: Vaccination failure

Injection administration

- IB
 ND
 MG
 MS
 EDS
 AMPV
 SE
- FP

• Coryza

...

- Only systemic inmunity
- Individual vaccination
- Two types
 - Intramuscular (IM)
 - Subcutanues (SC)

Injection administration

INJECTION PROCEDURES

Preparation

Use clean and autoclaved syringes

Vaccine should have room temperature (Max. Temperature 37° C)

Calibrate the syringes before starting each vial (0.25 – 0.5 ml)

Use the correct needle:

- 0.8 1.1 x 10 mm
- Change the needles regularly

1. Test tubes marked for ten doses of vaccines

Intramuscular injection

INTRAMUSCULAR INJECTION VACCINATION

- Injection should be strictly intramuscular
- Two possibility of application:
 - Breast
 - Leg
- Bacterine reactions can cause issues
 - Leg \rightarrow lame birds

Intramuscular injection

Single Leg injection

Double breast injection

Breast IM Injection

Correct injection in the breast

Failures by breast IM injection

Injection too close to sternum

Injection too close to crop

Failures by breast IM injection

Carnaccini et al

Contaminated injection

Failures in breast IM injection

Injection in liver

Injection in abdomen

SUBCUTANEUS INJECTION

INTRAMUSCULAR INJECTION VACCINATION

- Injection should be applied under the skin of the neck
- Do not damage the nerves, muscles or other structures in the area.
- Used also for live vaccines

NECK SUBCUTANEUS INJECTION

Correct injection in the neck

Failure by SC Injection

Edema

Damage in the neck due to incorrect injection

THANK YOU FOR YOUR INTEREST

